Lensor — Tab Capture Pipeline
Lensor — Tab Capture Pipeline
Technical deep-dive into how Lensor captures, processes, and displays screen content.
Table of Contents
- Overview
- Pipeline Stages
- Memory & Storage
- The Mermaid Diagram
- Remaining Optimization Opportunities
- Historical Note: The Old Approach
Overview
Lensor uses Chrome’s chrome.tabs.captureVisibleTab() API to capture single screenshots of the visible tab content, then processes and displays a zoomed portion in a canvas-based lens UI.
High-Level Flow
User Click → captureVisibleTab → Data URL → ImageBitmap → Canvas
Why This Approach?
We chose captureVisibleTab over the alternative tabCapture API because:
| Aspect | captureVisibleTab ✅ | tabCapture ❌ |
|---|---|---|
| Recording indicator | None | 🔴 Persistent blue circle |
| Resource usage | On-demand only | Continuous video stream |
| Permissions | activeTab |
tabCapture (more invasive) |
| Complexity | Simple data URL | MediaStream + ImageCapture |
Key Components Involved
| Component | Location | Role |
|---|---|---|
| Service Worker | service-worker.ts |
Chrome API access, captureVisibleTab calls |
useMediaCapture |
hooks/useMediaCapture.ts |
Screenshot capture, ImageBitmap conversion |
useLenseCanvasUpdate |
hooks/useLenseCanvasUpdate.ts |
Canvas drawing, zoom calculation |
Lense.tsx |
features/Lense/Lense.tsx |
React component orchestrating all hooks |
fisheyegl.ts |
lib/fisheyegl.ts |
WebGL fisheye distortion effect |
Pipeline Stages
Stage 1: Extension Activation
Trigger: User clicks the extension icon in Chrome toolbar.
What happens:
chrome.action.onClickedfires in service worker- Service worker calls
set({ active: true }, agentKey)via Crann - UI script receives state change, becomes visible
useMediaCapturehook auto-captures first frame
Code location: service-worker.ts → handleActionButtonClick()
Stage 2: Tab Screenshot (Service Worker)
What is captureVisibleTab?
A Chrome Extension API that takes a single screenshot of the currently visible tab area. It returns a data URL (base64-encoded PNG or JPEG).
How it works:
// In state-config.ts (captureTab action, runs in service worker)
const tab = await chrome.tabs.get(target.tabId);
const dataUrl = await chrome.tabs.captureVisibleTab(tab.windowId, {
format: 'png'
});
return dataUrl;
Key facts:
- Returns a data URL string (e.g.,
...) - Captures only the visible viewport (not scrolled content)
- No persistent stream or recording indicator
- Rate limited to 2 calls per second by Chrome
- Requires
activeTabpermission
What gets captured: The exact pixels visible in the browser viewport at that moment.
Stage 3: Data URL to ImageBitmap (Content Script)
The conversion process:
The data URL from captureVisibleTab must be converted to an ImageBitmap for efficient canvas drawing.
// In useMediaCapture.ts
async function dataUrlToImageBitmap(dataUrl: string): Promise<ImageBitmap> {
return new Promise((resolve, reject) => {
const img = new Image();
img.onload = async () => {
const bitmap = await createImageBitmap(img);
resolve(bitmap);
};
img.onerror = () => reject(new Error('Failed to load image'));
img.src = dataUrl;
});
}
Memory implications:
- Data URL string: ~10-15 MB for a 1080p PNG (base64 encoding adds ~33% overhead)
- Image element: Temporary, garbage collected after bitmap creation
- ImageBitmap: ~8 MB (uncompressed RGBA in GPU memory)
Important: The Image element and data URL are short-lived. Only the ImageBitmap persists.
Stage 4: Black Border Cropping
Why cropping?
When the tab dimensions don’t exactly match the display’s pixel ratio, Chrome may add black letterboxing or pillarboxing. We detect and remove this.
How it works:
// In useMediaCapture.ts
const cropMetrics = calculateImageBlackBorder(rawBitmap);
const processedBitmap = await cropImageBlackBorder(rawBitmap, cropMetrics);
Memory management (properly handled ✅):
- Original
rawBitmapexists (~8 MB) createImageBitmap()creates cropped bitmap (~8 MB) — briefly ~16 MB total- Original is explicitly closed:
sourceBitmap.close()— back to ~8 MB
Stage 5: React State Storage
Where is the final ImageBitmap stored?
// In useMediaCapture.ts
const [imageBitmap, setImageBitmap] = useState<ImageBitmap | null>(null);
Memory management (properly handled ✅):
// Before setting new bitmap, close the old one
if (currentBitmapRef.current) {
currentBitmapRef.current.close();
}
currentBitmapRef.current = processedBitmap;
setImageBitmap(processedBitmap);
We use a ref to track the current bitmap so we can explicitly close it before replacement, preventing memory leaks.
Stage 6: Canvas Drawing
The Canvases
Lensor uses FOUR canvas elements:
| Canvas | Size | Purpose | Visibility |
|---|---|---|---|
mainCanvas |
400×400 | Final display (what user sees) | Visible |
gridCanvas |
400×400 | Grid overlay and crosshairs | Visible |
interCanvas |
400×400 | Intermediate for fisheye processing | Hidden |
fisheyeCanvas |
400×400 | WebGL fisheye output | Hidden |
Drawing flow (fisheye OFF):
// In useLenseCanvasUpdate.ts
mainCtx.drawImage(
imageBitmap, // Full-tab ImageBitmap
sourceX,
sourceY, // Crop position (lens center)
sourceW,
sourceH, // Crop size (based on zoom level)
0,
0, // Destination position
400,
400 // Destination size (canvas size)
);
Drawing flow (fisheye ON):
ImageBitmap → interCanvas → WebGL (fisheyeCanvas) → mainCanvas
- Draw zoomed crop to
interCanvas(hidden 2D canvas) - Upload
interCanvasto WebGL texture - Apply fisheye shader distortion
- Draw WebGL output to
mainCanvas
Stage 7: Color Detection
After drawing to mainCanvas, we sample the center pixel:
// In useLenseCanvasUpdate.ts
const pixel = ctx.getImageData(CANVAS_SIZE / 2, CANVAS_SIZE / 2, 1, 1);
return `rgb(${pixel.data[0]}, ${pixel.data[1]}, ${pixel.data[2]})`;
Memory: getImageData() creates a small ImageData object (4 bytes for 1 pixel).
Memory & Storage
What Gets Stored Where
| Data | Type | Size (estimate) | Storage Location | Lifetime |
|---|---|---|---|---|
| Data URL (temporary) | String | ~12 MB | JS heap | Until ImageBitmap created |
| Raw ImageBitmap | GPU/CPU | ~8 MB | Temporary | Closed after crop |
| Processed ImageBitmap | GPU/CPU | ~8 MB | React state + ref | Until next recapture |
| Main Canvas | GPU | ~640 KB | DOM | Component lifetime |
| Grid Canvas | GPU | ~640 KB | DOM | Component lifetime |
| Inter Canvas | GPU | ~640 KB | DOM | Component lifetime |
| Fisheye Canvas | WebGL | ~640 KB | DOM | Component lifetime |
| WebGL Texture | GPU | ~640 KB | WebGL context | FisheyeGl instance lifetime |
Memory Lifecycle Diagram
[Recapture Triggered]
↓
[captureVisibleTab() → Data URL] ──→ ~12 MB string (temporary)
↓
[dataUrlToImageBitmap()]
├── Image element created (temporary)
└── createImageBitmap() ──→ ~8 MB GPU memory
↓
[cropImageBlackBorder()]
├── New cropped bitmap ──→ ~8 MB (briefly ~16 MB total)
└── Original closed ✅ ──→ ~8 MB freed
↓
[setImageBitmap()]
├── Close old bitmap ✅ ──→ Previous ~8 MB freed
└── Store new bitmap ──→ ~8 MB persists
↓
[drawImage to canvas]
└── No new allocations (draws from existing bitmap)
Peak memory during recapture: ~24 MB briefly (data URL + 2 ImageBitmaps), then settles to ~8 MB.
The Mermaid Diagram
sequenceDiagram
participant User
participant SW as Service Worker
participant Crann as Crann State
participant UI as Content Script (React)
participant Chrome as Chrome APIs
participant Canvas as Canvas Elements
User->>SW: Click extension icon
activate SW
SW->>Crann: set({ active: true })
Crann-->>UI: active state change
activate UI
UI->>Crann: callAction('captureTab')
Crann->>SW: RPC: captureTab
SW->>Chrome: tabs.captureVisibleTab()
Note over Chrome: ✅ No recording indicator!
Chrome-->>SW: Data URL (PNG)
SW-->>Crann: return dataUrl
Crann-->>UI: dataUrl
UI->>UI: new Image().src = dataUrl
UI->>UI: createImageBitmap(img)
UI->>UI: calculateImageBlackBorder()
UI->>UI: cropImageBlackBorder()
UI->>UI: Close old bitmap ✅
UI->>UI: setImageBitmap(cropped)
loop On each render / drag / zoom
UI->>Canvas: mainCtx.drawImage(bitmap, crop, dest)
alt Fisheye ON
UI->>Canvas: interCtx.drawImage()
Canvas->>Canvas: WebGL: setCanvasSource()
Canvas->>Canvas: mainCtx.drawImage(fisheyeCanvas)
end
UI->>Canvas: getImageData(center pixel)
Canvas-->>UI: RGB color
end
Note over UI,Canvas: Page scroll/resize/mutation detected
UI->>Crann: callAction('captureTab')
Note over UI: New capture cycle begins
deactivate UI
deactivate SW
Flowchart View
flowchart TD
subgraph Activation["🖱️ Extension Activation"]
A[User clicks icon] --> B[Service Worker receives click]
B --> C[Set active=true via Crann]
C --> D[UI becomes visible]
end
subgraph Capture["📸 Tab Capture"]
D --> E[UI calls captureTab action]
E --> F[SW: chrome.tabs.captureVisibleTab]
F --> G[Return data URL ~12MB]
G --> H[Convert to ImageBitmap ~8MB]
end
subgraph Processing["⚙️ Processing"]
H --> I{Has black borders?}
I -->|Yes| J[Crop borders]
J --> K[Close original bitmap ✅]
I -->|No| L[Use as-is]
K --> M[Close old state bitmap ✅]
L --> M
M --> N[Store in React state]
end
subgraph Rendering["🎨 Canvas Rendering"]
N --> O{Fisheye ON?}
O -->|No| P[drawImage to mainCanvas]
O -->|Yes| Q[drawImage to interCanvas]
Q --> R[WebGL fisheye shader]
R --> S[Draw to mainCanvas]
P --> T[Sample center pixel]
S --> T
T --> U[Update color palettes]
end
subgraph Recapture["🔄 Recapture Loop"]
U --> V{Page changed?}
V -->|Scroll/Resize/DOM| W[Trigger recapture]
W --> E
V -->|No| X[Wait for interaction]
X --> V
end
style F fill:#51cf66,color:#000
style K fill:#51cf66,color:#000
style M fill:#51cf66,color:#000
Remaining Optimization Opportunities
With the switch to captureVisibleTab, we’ve addressed the main efficiency concern (no more recording indicator). Here are remaining opportunities:
1. Full-Tab ImageBitmap for Small Lens
Current behavior: We capture the entire tab (~8MB) but only display a 400×400 zoomed portion.
The math:
- Tab: 1920×1080 = 2,073,600 pixels × 4 bytes = 8.3 MB
- Lens displays: ~100×100 to ~800×800 pixels depending on zoom
- We’re storing 10-100× more than we display!
Potential optimization: Crop the ImageBitmap immediately to only the area around the lens position, plus some buffer for drag movement. Trade-off: Would need to recapture more often when dragging near edges.
2. Unnecessary Canvases When Fisheye Off
Current behavior: All 4 canvases exist in DOM regardless of fisheye state.
Opportunity: Lazy-create interCanvas and fisheyeCanvas only when fisheye is enabled.
3. Aggressive Recapture Triggers
Current behavior: Any DOM mutation above threshold triggers a full recapture.
Problem: Modern web apps mutate DOM frequently (animations, real-time updates).
Opportunity:
- Smarter mutation filtering (ignore animations, ignore non-visible changes)
- Debounce more aggressively
- Consider a “freeze” mode that disables auto-recapture
4. Rate Limiting Awareness
Chrome’s limit: captureVisibleTab is limited to 2 calls per second.
Current handling: We debounce recapture triggers (500ms), which keeps us under the limit.
Opportunity: If rapid scrolling, queue captures and take the latest rather than dropping them.
Historical Note: The Old Approach
Prior to version 1.0.2, Lensor used the tabCapture API with a persistent MediaStream:
Old: tabCapture → MediaStream → ImageCapture → grabFrame() → ImageBitmap
New: captureVisibleTab → Data URL → ImageBitmap
Why we changed:
-
Recording indicator: The MediaStream approach caused Chrome to display a persistent blue “recording” indicator, which was confusing for users.
-
Complexity: The old approach required managing MediaStream lifecycle, ImageCapture objects, and track cleanup.
-
Resource usage: A continuous video stream consumed resources even when idle.
Trade-offs of the new approach:
- Each capture requires a new API call (slightly slower per-capture)
- Rate limited to 2 captures per second
- Must convert from data URL to ImageBitmap (small CPU cost)
For our use case (periodic screenshots, not continuous video), the new approach is clearly better.
Summary
The current pipeline is clean and efficient:
| Aspect | Status |
|---|---|
| Recording indicator | ✅ None (captureVisibleTab) |
| ImageBitmap memory leaks | ✅ Properly closed on replacement |
| Peak memory usage | ~24 MB briefly during recapture |
| Steady-state memory | ~8 MB (single ImageBitmap) |
| Rate limiting | ✅ Handled by debouncing |
Remaining optimization opportunities (low priority):
- Crop ImageBitmap to lens area only
- Lazy-create fisheye canvases
- Smarter DOM mutation filtering